City of Santa Fe Springs Water Utility Authority # 2011 Annual Water Quality Report We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act. This report is a snapshot of the drinking water quality that we provided to you last year. It is designed to provide you with details about where your water comes from, how it is tested, what it contains, and how it compares to standards set by regulatory agencies. We continue to strive to provide a reliable and economical supply that meets all regulatory requirements. We believe that informed customers are our best allies and therefore, we continue to be committed to providing you with this information. ### Where Does My Drinking Water Come From? Water supplied by the City of Santa Fe Springs comes from 2 sources: groundwater and surface water. The City of Santa Fe Springs pumps groundwater from our local well and disinfects this water with chlorine before distributing it to our customers. Also, last year the City purchased treated and disinfected water from the Central Basin Municipal Water District's groundwater treatment facility in Whittier Narrows. The City also uses Metropolitan Water District of Southern California's (MWD) filtered and disinfected surface water from both the Colorado River and the State Water Project in northern California. These water sources supply our service area shown on the map below. The quality of our groundwater and MWD's treated surface water supplies are presented in this report. ### **How Is My Drinking Water Tested?** Your drinking water is tested regularly for unsafe levels of chemicals, radioactivity and bacteria at the source and in the distribution system. We test weekly, monthly, quarterly, and annually. State and Federal laws allow us to test some substances less than once per year because their levels do not change frequently. All water quality tests are conducted by professionally-trained technicians in state-certified laboratories. ### Why Do I See So Much Coverage in the News About the Quality Of Tap Water and Bottled Water? All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). You can also get information on tap water by logging on to these helpful websites: - www.epa.gov/safewater (USEPA web site) - www.cdph.ca.gov/certlic/drinkingwater (California Department of Public Health web site) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, including viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application, and septic systems; - Radioactive contaminants, that can be naturallyoccurring or be the result of oil and gas production and mining activities. ## City of Santa Fe Springs Water Utility Authority ## 2011 Annual Water Quality Report #### What Are Water Quality Standards? In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The CDPH regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. #### What is a Water Quality Goal? In addition to mandatory water quality standards, the USEPA and the CDPH have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The table in this report includes three types of water quality goals. #### **Should I Take Additional Precautions?** Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection of *Cryptosporidium* and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline (1-800-426-4791). #### **Lead in Tap Water** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SFSWUA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at: http://www.epa.gov/safewater/lead #### **Source Water Assessment** Every five years, MWD is required by the CDPH to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. MWD has submitted to the CDPH its 2010 updates to the Watershed Sanitary Surveys for the Colorado River and State Water Project, which include suggestions for how to better protect these source waters. Both source waters are exposed to stormwater runoff, recreational activities, wastewater discharges, wildlife, fires, and other watershed-related factors that could affect water quality. Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires MWD to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWD completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWD at (213) 217-6850. SFSWUA conducted an assessment of its groundwater supplies in 2002. Groundwater supplies are considered most vulnerable to chemical/petroleum processing/storage, automobile repair automobile gasoline stations, dry cleaners, fleet/truck/bus terminals, landfills/dumps, motor pools, sewer collection systems, water supply wells, electrical/electronic manufacturing, metal plating/finishing/fabricating, furniture repair/manufacturing, machine shops, plastics/synthetic airport maintenance/fueling areas, food producers, photograph processing/printing, and processing, hardware/lumber/parts stores. A copy of the approved assessment may be obtained by contacting Frank Beach at 562-868-0511 x 3611. Please visit us on the web at: www.santafesprings.org Results are from the most recent testing performed in accordance with State and Federal drinking water regulations | CONSTITUENTS AND UNITS | SFSWA GRO | SFSWA GROUNDWATER | | MWD SURFACE WATER | | PHG OR | COURSES IN DRINKING WATER | |---|-----------|-------------------|--------------|-------------------|-----------|-------------------------|---| | | AVERAGE | RANGE | AVERAGE | RANGE | MCL | (MCLG) | SOURCES IN DRINKING WATER | | ORGANIC CHEMICALS Tested in 2011 | | | Samuel Const | | LA CHARLE | 100 | | | Tetrachloroethylene (µg/l) | 0.66 | ND - 1.3 | ND | ND | 5 | 0.06 | Degreasing sites and other industries | | Γrichloroethylene (μg/I) | 1 | ND - 2.3 | ND | ND | 5 | 1.7 | Degreasing sites and other industries | | 1,1-Dichloroethylene (µg/I) | <0.5 | ND - 0.76 | ND | ND | 6 | 10 | Degreasing sites and other industries | | INORGANIC CHEMICALS Tested in 2019
Aluminum (mg/l) | < 0.05 | ND - 0.068 | 0.11 | ND - 0.22 | 1 | 0.6 | Residue from water treatment processes | | Barium (mg/l) | <0.05 | ND - 0.068 | ND | ND - 0.22 | 1 | 0.6 | Erosion of natural deposits | | Fluoride (mg/l) Naturally-occuring | 0.24 | ND - 0.32 | NR NR | NR | 2.0 | 1 | Erosion of natural deposits | | Fluoride (mg/l) Treatment-related | NR | NR | 0.8 | 0.7 - 1.0 | | inge 0.7-1.3
nal 0.8 | Water additive for dental health | | Nitrate (mg/l as NO3) | 9.4 | 6.2 - 17 | <2 | ND - 2 | 45 | 45 | Runoff and Leaching from fertilizer/septic tanks/sewage | | | | O STOR | | | | 40 g | | | RADIOLOGICALS Tested in 2008, 2009 | | | | Jede Market | | C 400 21 37 1 | | | Gross Alpha (pCi/l) | <3 | ND - 11 | <3 | ND - 3 | 15 | (0) | Erosion of natural deposits | | Gross Beta (pCi/l) | NR | NR | 4 | ND - 6 | 50 | (0) | Decay of man-made or natural deposits | | Uranium (pCi/l) | 3.6 | ND - 6.1 | 2 | 1-2 | 20 | 0.43 | Erosion of natural deposits | | PRIMARY STANDARDS MONITORED IN THE DISTRIBUTION SYSTEM - MANDATED FOR PUBLIC HEALTH | | | | | | | | | |---|-----------------|--------------------------------------|-----------------|-------------|---|--|--|--| | DISINFECTION BY-PRODUCTS (a) | AVERAGE | RANGE | MCL | MCLG | SOURCES IN DRINKING WATER | | | | | Trihalomethanes (µg/l) Tested quarterly | 34 | 2.4 - 70 | 80 | | Byproduct of drinking water disinfection | | | | | Haloacetic Acids (µg/l) Tested quarterly | 16 | ND - 42 | 60 | Boshu Brout | Byproduct of drinking water disinfection | | | | | Total Chlorine Residual (mg/l) Tested weekly | 1.3 | 0.1 - 2.8 | 4.0 (b) | 4.0 (c) | Disinfectant added for treatment | | | | | MICROBIOLOGICAL | | | 1960 | A Company | A CONTRACT OF THE PARTY | | | | | Total Coliform Tested weekly | 1.6% | | 5.0% | (0) | Naturally Present in the Environment | | | | | AT-THE-TAP LEAD AND COPPER Tested in 2010 | 90th PERCENTILE | # OF SITES ABOVE THE
ACTION LEVEL | ACTION
LEVEL | PHG | SOURCES IN DRINKING WATER | | | | | Copper (mg/l) | 0.31 (d) | 0 out of 30 sites | 1.3 | 0.3 | Internal corrosion of household plumbing | | | | | ead (ug/l) | 5.4 (d) | 1 out of 30 sites | 15 | 0.2 | Internal corrosion of household plumbing | | | | | INORGANIC CHEMICALS AND UNITS Tested in 2011 | SFSWA GROUNDWATER | | MWD SURFACE WATER | | MCL | PHG | SOURCES IN DRINKING WATER | |--|-------------------|-------------|-------------------|-------------|-------|-------------|---| | | AVERAGE | RANGE | AVERAGE | RANGE | NICL | FIIG | SOURCES IN DRINKING WATER | | luminum (µg/l) (e) | <50 | ND - 68 | 110 | ND - 220 | 200 | 600 | Surface water treatment process residue | | chloride (mg/l) | 86 | 71 - 130 | 70 | 63 - 76 | 500 | | Runoff/leaching from natural deposits | | color (color units) | ND | ND | 2 | 1-2 | 15 | | Naturally-occurring organic materials | | onductivity (umhos/cm) | 910 | 730 - 1,000 | 630 | 320 - 870 | 1,600 | - (| Substances that form ions when in water | | on (µg/l) | <100 | ND - 130 | ND | ND | 300 | | Runoff/leaching from natural deposits | | dor (threshold odor number) | <1 | ND - 1 | 2 | 2 | 3 | 12 15 2 2 M | Naturally-occurring organic materials | | ulfate (mg/l) | 160 | 110 - 190 | 150 | 120 - 170 | 500 | | Runoff/leaching from natural deposits | | otal Dissolved Solids (mg/l) | 600 | 510 - 630 | 440 | 390 - 480 | 1,000 | | Runoff/leaching from natural deposits | | urbidity (NTU) | 0.18 | ND - 3 | 0.05 | 0.02 - 0.07 | 5 | | Runoff/leaching from natural deposits | | SECONDARY STANDARDS MONITORED IN THE DISTRIBUTION SYSTEM - FOR AESTHETIC PURPOSES | | | | | | | | |---|---------|----------|-----|-----|---------------------------------------|--|--| | GENERAL PHYSICAL CONSTITUENTS | AVERAGE | RANGE | MCL | PHG | SOURCES IN DRINKING WATER | | | | Odor (threshold odor number) | 1 | | 15 | | Naturally-occurring organic materials | | | | Turbidity (NTU) Tested monthly | 0.1 | ND - 0.7 | 5 | | Runoff/leaching from natural deposits | | | | ADDITIONAL UNREGULATED CI | HEMICALS OF INT | EREST | | | | | | |--------------------------------|-----------------|-------------------|---------|-------------------|------------|-------------------|---------------------------------------| | CONSTITUENTS AND UNITS | SFSWA GRO | SFSWA GROUNDWATER | | MWD SURFACE WATER | | PHG | COURCES IN DRINKING WATER | | Tested in 2011 | AVERAGE | RANGE | AVERAGE | RANGE | MCL | PHG | SOURCES IN DRINKING WATER | | Alkalinity (mg/l as CaCO3) | 190 | 160 - 220 | 82 | 43 - 110 | 5-100 | | Runoff/leaching from natural deposits | | Calcium (mg/l) | 100 | 74 - 120 | 48 | 41 - 54 | | | Runoff/leaching from natural deposits | | Magnesium (mg/l) | 21 | 15 - 24 | 18 | 16 - 21 | - | - | Runoff/leaching from natural deposits | | oH (standard unit) | 7.7 | 7.4 - 8.0 | 8.1 | 7.8 - 8.8 | | | Runoff/leaching from natural deposits | | Potassium (mg/l) | 3.7 | 3.7 | 3.8 | 3.4 - 4.1 | A discount | | Runoff/leaching from natural deposits | | Sodium (mg/l) | 64 | 44 - 100 | 69 | 62 - 76 | | | Runoff/leaching from natural deposits | | Total Hardness (mg/l as CaCO3) | 330 | 260 - 380 | 170 | 60 - 250 | S W | (All and a second | Runoff/leaching from natural deposits | | Total Organic Carbon (mg/l) | NR | NR | 2.3 | 1.7 - 2.9 | TT 🥕 | | Naturally-occurring organic materials | | 1,4-Dioxane (ug/l) | <1 | ND - 1.5 | NR | NR | NL = 1 | Sec. 1 | Industrial discharges | | METROPOLITAN WATER DISTRICT S | FOOTNOTES | | | | | | | |--|--|------------------------|------------------|----------------|---|--|--| | Turbidity Combined Filter Effluent
Treatment Technique (TT) tested continuously | TT | Turbidity Measurements | TT
Violation? | Typical Source | (a) Running annual average used to calculate MCL compliance | | | | Highest single turbidity measurement | lighest single turbidity measurement 0.3 NTU 0.07 No Runoff (t | | | | | | | | 2) Percentage of samples less than 0.3 NTU | (c) Maximum Residual Disinfectant Level Goal | | | | | | | | Turbidity is a measure of the cloudiness of the wa | (MRDLG) | | | | | | | | Low turbidity in Metropolitan's treated water is a go | (d) 90th percentile from the most recent sampling | | | | | | | | technique is a required process intended to reduce to measure directly. | (e) Aluminum has primary and secondary standards | | | | | | | - ABBREVIATIONS | µg/l = microgram per liter or parts-per-billion; mg/l = milligram per liter or parts-per-million; pCl/L = picoCuries per liter; | NTU = nephelometric turbidity units; µmho/cm = micromhos per centimeter; ND = Non detect; | MCL = Maximum Contaminant Level; (MCLG) = Federal MCL Goal; - PHG = California Public Health Goal; NR = not required to be tested; TT = treatment technique; NL = Notification Level; < = average is less than the detection limit for reporting Santa Fe Springs Water Authority PRSRT STD U.S. POSTAGE SANTA FE SPRINGS, CA PERMIT NO. 1 Your City Council Wayor City Council Mayor Pro Tem Richard J. Moore, Mayor Pro Tem Luis M. González, Councilmember Joseph D. Serrano, Sr., Councilmember Juanita A. Trujillo, Councilmember #### How Can I Participate in Decisions On Water Issues That Affect Me? The public is welcome to attend City Council meetings which are normally scheduled on the second and fourth Thursday of each month at 7 p.m. at City Hall, 11710 East Telegraph Road, Santa Fe Springs. #### How Do I Contact My Water Agency If I Have Any Questions About Water Quality? If you have specific questions about your tap water quality, please contact Frank Beach, Utility Services Manager at (562) 868-0511, Ext. 3611. Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de llamar al (562) 868-0511, Ext. 3601. #### **Definitions:** **Maximum Residual Disinfectant Level (MRDL):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial pathogens. **Primary Drinking Water Standard:** MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements. **Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. **Notification Level (NL):** An advisory level which, if exceeded, requires the drinking water system to notify the governing body of the local agency in which users of the drinking water reside (i.e. City Council, County Board of Supervisors). **Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.